EFFECTS OF PARASITIC CONVECTION ON THE
OPTIMAL DIFFUSION COLUMN WORKING IN
THE SAMPLING MOCDE

A. V. Suvorov and G. D, Rabinovich UDC 621,039,341.6

Optimization theory is discussed for a thermal-diffusion column working in sampling mode with
parasitic convection,

It has been shown [1] that any temperature asymmetry around the perimeter of a thermal-diffusion column
results in parasitic convection; a correction has been applied for this adverse factor [2] for the conditions of
zero tapoff.

The physical and mathematical models of [2] are used here to extend the theory of parasitic convection
to the sampling mode; the equations describing the steady state then contain not only a term representing the
parasitic effect Op> but also a term ¢ corresponding to product tapoff:
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These equations are written for two regions in the thermal-diffusion column that differ in mixture density on
account of the temperature asymmetry around the perimeter, where the parasitic circulation coincides in sense
with the useful tapoff and is there given a positive value, whereas in the other region it is given a negative
value.

We introduce the dimensionless variables
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to convert (1) to the form
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We solve (3) subject to the initial conditions
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which for y = yg take the form
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Fig. 1. Effects of 6 (m) on ¢ (kg/sec) for H* = 2° 10! kg/sec-

m?, y% =2.10"m% 1) ¢y = 0.7, u = 0; 2) 0.7 and 0.6; 3) 0.5

and 0; 4) 0.5 and 0.6; 5) 0.5 and 0.9; 6) 0.2 and 0.6.
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Fig. 2. Dependence of Inq on 6 (m) for ¢y = 0.5, H¥*=2. 10'4
kg/sec-m®, y* =2-1071"m* A) ¢ = 2-10~" kg/sec; B) ¢ = 3
10~7 kg/sec C) c=4.1077 kg/sec 1, 5, 9 u=0, 2, and 6; 10)
u=0,3, 3, and 7; 11) u = 0.6, 4, andS 12) u = 0,9.
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From (5) and (6) we can derive c}, and cl, whose values can be used in determining the concentration at
the positive end of the column:

¢, = ——;-— (¢, +¢)- )

The quantities ye and # appearing in (5) and (6) are functions of the gap 6, which follows from the definition of
(2) if we substitute their values in place of H and K (see notation):
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Here the quantities with asterisks are independent of the gap. Therefore, cp in (8) should be dependent on six
parameters: ¢cg, u, ¢, H, y’g, and 8. If we know the physical characteristics of the mixture, the working
parameters of the column, and the dimensions such as the length and perimeter, then the parameters that
otherwise determine the working conditions are u, o, and 6. By analogy with [3], we proceed as follows: We
have to determine values of § such that ¢ is maximized for a given degree of separation q in the presence of
variable parasitic convection.

The calculations were performed on a Minsk-22 computer; Fig. 1 shows results for the case Ing =1,

This indicates that the optimum gap (that which provides the best output) is virtually independent of the
initial concentration and of the parasitic effect represented by u in (7) for a given degree of separation, while
the output from the column in the range & > dopt is more sensitive to any change in the gap than it is in the
range 6 < dopt; therefore, the latter is to be considered as the region of more stable operation., If, on the
other hand, the oufput is to be constant, then the optimum gap, which corresponds in that case to maximum
separation, shifts to smaller §opt as the parasitic-convection parameter decreases and as the tapoff is re-
duced, as Fig. 2 shows. This results is in agreement with previous ones [3] for the limiting cases ¢ < 1 and
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Fig. 3. Graphs for ¢ as a function of
Ing: 1) ¢y = 0.7, u=0; 2) 0,5 and 0; 3)
0.7 and 0,3; 4) 0.5 and 0.3; 5) 0.2 and

0; 6) 0.2 and 0.3,

1—c <« 1, The effects of the tapoff are more important than those of parasitic convection. For example, in-
crease in the tapoff by a factor 2.5 implies that the gap must be increased by 20% for the parameters H*, y’(‘;,
and ¢;, whereas increase in u from 0.3 to 0.9, i.e., by a factor 3, alters the optimum gap by only 4-8%.

Further analysis of the results from (5) and (6) reveals the effects of the parasitic convection in tapoff
mode, particularly as regards the energy-utilization factor ¢, which is defined as the ratio of the heat con-
sumption per unit length for a column with the optimum gap to the same for an ideal stage with the same gap
in the zero section, i.e., in accordance with [3] by
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We substitute for Hopt and Kopt and use the following value functions {4]:
— —2
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Figure 3 shows results for the values of H* and yg used in the previous two cases; the effects of the parasitic
convection on the energy performance factor increase with the degree of separation and with the initial con-
centration of the target component. However, the performance of a column of constant cross section is always
higher for a given u and increases with ¢; {3}, which is important in the use of thermal diffusion to purify sub-
stances from trace components. This shows that parasitic convection causes the separation to deviate appre~
ciably from the theoretical prediction for an ideal model, which involves the assumption of perfectly isother-
mal working surfaces.

It is therefore of interest to examine the effects arising from the useful tapoff on the deviation of the
separation factor from the theoretical value; a measure of the deviation is Ing/Ing*, where ¢ and g* are the
degrees of separation in a column with and without parasitic convection, respectively.

Figure 4 shows that the performance approaches the theoretical value for an ideal column as the tapoff
increases for a given value for the parasitic convection, and the actual value may approach 95% of the theo-
retical one., This explains some results [5] on the separation of heptane —benzene mixtures, which indicate
that the agreement with theory is good only in tapoff mode, whereas the deviation from theory was very con-
siderable when there was no tapoff, In fact, Fig. 4 shows that Ing/Inqg* = 0.39 without tapoff if np = 0.5,
whreas In q/lnq*=0.96 in the tapoff mode with ®n=1. Threfore, the difference is very substantial. If
the conditions are such that Ing/Ing* — 1, a thermal-diffusion column can be used to advantage to determine
the Soret coefficient, as has been shown elsewhere [6]. This method has advantages over the nonstationary
method {7] because it does not require very precise measurement of small concentration shifts.

To gain a clearer idea of the design specifications for a column for this purpose we consider the case
corresponding to curve 3 of Fig. 4; the parasitic tapoff factor is [2]
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Fig. 4. The % dependence
of Inq/Ing* for c; = 0.5,

H* = 2+10* kg/sec - m?, yE=
2:10" m*: 1) np = 0; 2)
0.25; 3) 0.5; 4) 0.7.

np= 15T (6T)/a (AT, (12)

and in this case %p = 0.5, while o = 1 for many mixtures, so we put AT = 100°, T = 330°K, to obtain that 6T =
1°; on the other hand, it has been shown [8] that

eAT (13)

o7 =
8 ¥

where the quantity ¢ = 1 is dependent on the heat-transfer conditions at the surfaces, and the value for this is
taken as 0.2 for the purposes of estimates. Then & = 0.015 mm, i.e., the precision in manufacturing the
column must be rather high for these conditions.

Also, we have to determine the useful tapoff, which corresponds to the right-hand part of the curves in
Fig. 2, and the value must be such that Inq/Inq* differs little from 1.

Therefore, Figs. 1-4 can be used in designing a column for analytical or technological purposes, although
it must be borne in mind that changes in c¢g, H*, and y¥ can affect the results to a certain extent,

NOTATION

H = agp’B3(AT)2B/6T;

K¢ = 8203267 (AT)?B/91n°D;

c is the mass concentration;

o is the useful tapoff ratio;

9p is the parasitic tapoff ratio;

Z is the vertical coordinate;

y is the dimensionless coordinate of (2);

% Ap are the dimensionless useful and parasitic ratios in (2);

u is the quantity in (7);

y"e‘, H* are the quantities defined in (9),

OT is the temperature asymmetry (temperature difference between hot and cold
sections);

€ is the eccentricity in (13);

q, g are the separation factors in the presence and absence of parasitic convection,
respectively;

o is the thermal-diffusion constant;

B, 0 are the perimeter and width of gap, respectively;

n, D, B are the dynamic viscosity, diffusion coefficient, and thermal-expansion coeffi-

cient, respectively;
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AT is the temperature difference between working surfaces.

Indices

e is the positive end;
P is the parasitic end;
0 is the initial value;
t

is the concentration referred to region 1;
is the concentration referred to region 2.

=2
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DIFFERENTIAL TRANSFER EQUATIONS FOR
MULTIPHASE, MULTICOMPONENT MEDIA

V. I. Pavlov UDC 532.529:541.124

Transfer equations of mass and momentum are obtained for single-phase, single~-component and
for multiphase, multicomponent media with account taken of substance change, Similarity cri-
teria for these media are analyzed.

Investigations of transfer processes in multiphase, multicomponent media are topical problems in view
of their wide application.

A considerable part of the investigations was extended in [1]. Further development was carried out in
[2, 3]. In [2], transfer processes in a two-phase multicomponent medium are described and a thermodynamic
analysis is carried out, The adopted assumptions, however, limit the range of applications for the obtained
equations.

In the present article the transfer of mass and momentum in a multiphase, multicomponent (n, m) me-
dium is described in accordance with the concepts of Sedov [4, 5], fruitfully applied by him to develop the
mechanics of the multiphase media [1].

Let us consider a volume element of the medium with considerably smaller dimensions than those of the
phase elements.

It is assumed that the transfer of a substance (mass, momentum) within a separate component, phase,
or mixture can be described similarly as for a solid medium, but now the substance transport between the
phases or components in this continuum is also taken into account,

In contrast to other investigations [2, 3], no restrictions are imposed as regards the effect of the shape,
the number of phases (the number of phases n = 1), or the number of components (the number of components
m = 1), The phases may be continuous or discrete., The elements of any phase may interact either with the
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